Agreement Functions for Distributed Computing Models
نویسندگان
چکیده
The paper proposes a surprisingly simple characterization of a large class of models of distributed computing, via an agreement function: for each set of processes, the function determines the best level of set consensus these processes can reach. We show that the task computability of a large class of fair adversaries that includes, in particular superset-closed and symmetric one, is precisely captured by agreement functions.
منابع مشابه
Green Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملComparison of Three Soft Computing Methods in Estimating Apparent Shear Stress in Compound Channels
Apparent shear stress acting on a vertical interface between the main channel and floodplain in a compound channel serves to quantify the momentum transfer between sub sections of this cross section. In this study, three soft computing methods are used to simulate apparent shear stress in prismatic compound channels. The Genetic Algorithm Artificial neural network (GAA), Genetic Programming (GP...
متن کاملOptimizing Teleportation Cost in Multi-Partition Distributed Quantum Circuits
There are many obstacles in quantum circuits implementation with large scales, so distributed quantum systems are appropriate solution for these quantum circuits. Therefore, reducing the number of quantum teleportation leads to improve the cost of implementing a quantum circuit. The minimum number of teleportations can be considered as a measure of the efficiency of distributed quantum systems....
متن کاملSoft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors
Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کامل